查看原文
其他

专著推荐 | 将R语言用于语言量化研究与数据可视化呈现

通讯君 语言学通讯 2022-06-09

点击蓝字  关注我们


通讯君与Routledge出版社合作推广语言学学著作(注:“专著推荐”栏目包括books与edited volumes)。如果需要有以下书籍业务欢迎联系我们:

1 订购国际原版书

2 订阅国际学术期刊

3 国际出版社出版英文著作

4 国内出版社出版中文著作

联系人王老师 13501892122 电话同微信


关键词:多模态、话语分析、符号学、教学设计、具身语言学习

 推荐语:本期主题是“使用R语言做语言量化研究与可视化呈现”,推荐两本书1是Data Visualization and Analysis in Second Language Research这本书447元,仅余下5本现货。2是Multimodal Theory and Methodology:For the Analysis of (Inter)action and Identity524元,有10本现货。现货售罄后,将转为期货(国际物流8周)

第一本

二语研究中的数据可视化与(量化)分析

Data Visualization and Analysis in Second Language Research

ISBN 9780367469610

By Guilherme D. Garcia

Published May 31, 2021 by Routledge

286 Pages 30 B/W Illustrations

本书特惠价格447元,下单即可发货,扫码即可购买(价格涵盖书费、国际物流、关税、报关费用、税票等一揽子在内)开具电子发票,支持对公转账,联系人王老师13501892122

现货5本,先购先得,售罄后则转为期货,国际物流8周左右

This introduction to visualization techniques and statistical models for second language research focuses on three types of data (continuous, binary, and scalar), helping readers to understand regression models fully and to apply them in their work. Garcia offers advanced coverage of Bayesian analysis, simulated data, exercises, implementable script code, and practical guidance on the latest R software packages. The book, also demonstrating the benefits to the L2 field of this type of statistical work, is a resource for graduate students and researchers in second language acquisition, applied linguistics, and corpus linguistics who are interested in quantitative data analysis.

本书目录

Part I Getting ready

1 Introduction

1.1 Main objectives of this book

1.2 A logical series of steps

1.2.1 Why focus on data visualization techniques?

1.2.2 Why focus on full-fledged statistical models?

1.3 Statistical concepts

1.3.1 p-values

1.3.2 Effect sizes

1.3.3 Confidence intervals

1.3.4 Standard errors

1.3.5 Further reading

2 R basics 23

2.1 Why R?

2.2 Fundamentals

2.2.1 Installing R and RStudio

2.2.2 Interface

2.2.3 R basics

2.3 Data frames

2.4 Reading your data

2.4.1 Is your data file ready?

2.4.2 R Projects

2.4.3 Importing your data

2.5 The tidyverse package

2.5.1 Wide-to-long transformation

2.5.2 Grouping, filtering, changing, and summarizing data

2.6 Figures

2.6.1 Using ggplot2

2.6.2 General guidelines for data visualization

2.7 Basic statistics in R

2.7.1 What’s your research question?

2.7.2 t-tests and ANOVAs in R

2.7.3 A post-hoc test in R

2.8 More packages

2.9 Additional readings on R

2.10 Summary

2.11 Exercises

Part II Visualizing the data

3 Continuous data

3.1 Importing your data

3.2 Preparing your data

3.3 Histograms

3.4 Scatter plots

3.5 Box plots

3.6 Bar plots and error bars

3.7 Line plots

3.8 Additional readings on data visualization

3.9 Summary

3.10 Exercises

4 Categorical data

4.1 Binary data

4.2 Ordinal data

4.3 Summary

4.4 Exercises

5 Aesthetics: optimizing your figures

5.1 More on aesthetics

5.2 Exercises

Part III Analyzing the data 

6 Linear regression

6.1 Introduction

6.2 Examples and interpretation

6.2.1 Does Hours affect scores?

6.2.2 Does Feedback affect scores?

6.2.3 Do Feedback and Hours affect scores?

6.2.4 Do Feedback and Hours interact?

6.3 Beyond the basics

6.3.1 Comparing models and plotting estimates

6.3.2 Scaling variables

6.4 Summary

6.5 Exercises

7 Logistic regression

7.1 Introduction

7.1.1 Defining the best curve in a logistic model

7.1.2 A family of models

7.2 Examples and interpretation

7.2.1 Can reaction time differentiate learners and native speakers?

7.2.2 Does Condition affect responses?

7.2.3 Do Proficiency and Condition affect responses?

7.2.4 Do Proficiency and Condition interact?

7.3 Summary

7.4 Exercises

8 Ordinal regression

8.1 Introduction

8.2 Examples and interpretation

8.2.1 Does Condition affect participants’ certainty?

8.2.2 Do Condition and L1 interact?

8.3 Summary

8.4 Exercises

9 Hierarchical models

9.1 Introduction

9.2 Examples and interpretation

9.2.1 Random-intercept model

9.2.2 Random-slope and random-intercept model

9.3 Additional readings on regression models

9.4 Summary

9.5 Exercises

10 Going Bayesian

10.1 Introduction to Bayesian data analysis

10.1.1 Sampling from the posterior

10.2 The RData format

10.3 Getting ready

10.4 Bayesian models: linear and logistic examples

10.4.1 Bayesian model A: Feedback

10.4.2 Bayesian model B: Relative clauses with prior specifications

10.5 Additional readings on Bayesian inference

10.6 Summary

10.7 Exercises

11 Final remarks

Appendix A: Troubleshooting

Appendix B: RStudio shortcuts

Appendix C: Symbols and acronyms

Appendix D: Files used in this book

Appendix E: Contrast coding

Appendix F: Models and nested data

Glossary

References

Subject index

Function Index

第二本

使用R语言处理语篇数据

Textual Data Science with R

By Mónica Bécue-Bertaut

Copyright Year 2018

ISBN 9781032093659

Published June 30, 2021 by Chapman and Hall/CRC

212 Pages 50 B/W Illustrations

本书特惠价格447元,下单即可发货,扫码即可购买(价格涵盖书费、国际物流、关税、报关费用、税票等一揽子在内)开具电子发票,支持对公转账,联系人王老师13501892122

现货10本,先购先得,售罄后则转为期货,国际物流8周左右


Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential.

本书目录


1. Encoding: from a corpus to statistical tables

Textual and contextual data

Textual data

Contextual data

Documents and aggregate documents

Examples and notation

Choosing textual units

Graphical forms

Lemmas

Stems

Repeated segments

In practice

Preprocessing

Unique spellings

Partially-automated preprocessing

Word selection

Word and segment indexes

The Life UK corpus: preliminary results

Verbal content through word and repeated segment indexes

Univariate description of contextual variables

A note on the frequency range

Implementation with the Xplortext package

In summary

2. Correspondence analysis of textual data

Data and goals

Correspondence analysis: a tool for linguistic data analysis

Data: a small example

Objectives

Associations between documents and words

Profile comparisons

Independence of documents and words

The X2 test

Association rates between columns and words

Active row and column clouds

Row and column pro_le spaces

Distributional equivalence and the X2 distance

Inertia of a cloud

Fitting document and word clouds

Factorial axes

Visualizing rows and columns

Category representation

Word representation

Transition formulas

Superimposed representation of rows and columns

Interpretation aids

Eigenvalues and representation quality of the clouds

Contribution of documents and words to axis inertia

Representation quality of a point

Supplementary rows and columns

Supplementary tables

Supplementary frequency rows and columns

Supplementary quantitative and qualitative variables

Validating the visualization

Interpretation scheme for textual CA results

Implementation with Xplortext

Summary of the CA approach

3. Applications of correspondence analysis

Choosing the level of detail for analyses

Correspondence analysis on aggregate free text answers

Data and objectives

Word selection

CA on the aggregate table

Document representation

Word representation

Simultaneous interpretation of the plots

Supplementary elements

Supplementary words

Supplementary repeated segments

Supplementary categories

Implementation with Xplortext

Direct analysis

Data and objectives

The main features of direct analysis

Direct analysis of the culture question

Implementation with Xplortext

4. Clustering in textual analysis

Clustering documents

Dissimilarity measures between documents

Measuring partition quality

Document clusters in the factorial space

Partition quality

Dissimilarity measures between document clusters

The single-linkage method

The complete-linkage method

Ward's method

Agglomerative hierarchical clustering

Hierarchical tree construction algorithm

Selecting the final partition

Interpreting clusters

Direct partitioning

Combining clustering methods

Consolidating partitions

Direct partitioning followed by AHC

A procedure for combining CA and clustering

Example: joint use of CA and AHC

Data and objectives

Data preprocessing using CA

Constructing the hierarchical tree

Choosing the final partition

Contiguity-constrained hierarchical clustering

Principles and algorithm

AHC of age groups with a chronological constraint

Implementation with Xplortext

Example: clustering free text answers

Data and objectives

Data preprocessing

CA: eigenvalues and total inertia

Interpreting the first axes

AHC: building the tree and choosing the final partition

Describing cluster features

Lexical features of clusters

Describing clusters in terms of characteristic words

Describing clusters in terms of characteristic documents

Describing clusters using contextual variables

Describing clusters using contextual qualitative variables

Describing clusters using quantitative contextual variables

Implementation with Xplortext

Summary of the use of AHC on factorial coordinates coming from CA

5. Lexical characterization of parts of a corpus

Characteristic words

Characteristic words and CA

Characteristic words and clustering

Clustering based on verbal content

Clustering based on contextual variables

Hierarchical words

Characteristic documents

Example: characteristic elements and CA

Characteristic words for the categories

Characteristic words and factorial planes

Documents that characterize categories

Characteristic words in addition to clustering

Implementation with Xplortext

6. Multiple factor analysis for textual analysis

Multiple tables in textual analysis

Data and objectives

Data preprocessing

Problems posed by lemmatization

Description of the corpora data

Indexes of the most frequent words

Notation

Objectives

Introduction to MFACT

The limits of CA on multiple contingency tables

How MFACT works

Integrating contextual variables

Analysis of multilingual free text answers

MFACT: eigenvalues of the global analysis

Representation of documents and words

Superimposed representation of the global and partial configurations

Links between the axes of the global analysis and the separate analyses

Representation of the groups of words

Implementation with Xplortext

Simultaneous analysis of two open-ended questions: impact of lemmatization

Objectives

Preliminary steps

MFACT on the left and right: lemmatized or nonlemmatized

Implementation with Xplortext

Other applications of MFACT in textual analysis

MFACT summary

7. Applications and analysis workflows

General rules for presenting results

Analyzing bibliographic databases

Introduction to the lupus data

The corpus

Exploratory analysis of the corpus

CA of the documents _ words table

The eigenvalues

Meta-keys and doc-keys

Analysis of the year-aggregate table

Eigenvalues and CA of the lexical table

Chronological study of drug names

Implementation with Xplortext

Conclusions from the study

Badinter's speech: a discursive strategy Methods

Breaking up the corpus into documents

The speech trajectory unveiled by CA

Results

Argument flow

Conclusions on the study of Badinter's speech

Implementation with Xplortext

Political speeches

Data and objectives

Methodology

Results

Data preprocessing

Lexicometric characteristics of the speeches and lexical table coding

Eigenvalues and Cramér's V

Speech trajectory

Word representation

Remarks

Hierarchical structure of the corpus

Conclusions

Implementation with Xplortext

Corpus of sensory descriptions

Introduction

Data

Eight Catalan wines

Jury

Verbal categorization

Encoding the data

Objectives

Statistical methodology

MFACT and constructing the mean configuration

Determining consensual words

Results

Data preprocessing

Some initial results

Individual configurations

MFACT: directions of inertia common to the majority of groups

MFACT: representing words and documents on the first plane

Word contributions

MFACT: group representation

Consensual words

Conclusion

原版书海外代购!如需购买国际原版学术著作,可以联系我们询价,支持对公转账,可以制订合同,开具电子发票和购物清单。订购联系人:王老师 13501892122电话同微信

专著推荐 | 多模态话语分析与语言教学应用


专著推荐 | Writing Using Sources for Academic Purposes


专著推荐 | 教师专业学习共同研究丛书


专著推荐 | Pragmatics A Resource Book for Students


专著推荐 | 批评话语分析《叙述立场,道德与政治身份:Facebook上发起运动上的运动》


专著推荐 | Moral Talk: Stance and Evaluation in Political Discourse


专著推荐 | Translation Revision and Post-editing


专著推荐 | 方志辉《功能语法在英语读写教学中的应用》


专著推荐 | 社会翻译学重要读本 Translation and Society An Introduction


专著推荐 | Dániel Z. Kádár 《礼貌、不礼貌与礼仪研究》


专著推荐 | Language as Symbolic Power


专著推荐 |《语言教育中身份和互动的复杂性》


专著推荐 | 王寅《认知语言学》(重排校订版)


专著推荐 | 何安平、许家金、张春青《语料库辅助中学英语教学案例选编》


专著推荐 |  Jeffrey Gil《文化软实力与全球推广汉语学习:孔子学院项目》


专著推荐 | Translation and Global Space of Power


专著推荐 | Acquiring Metaphorical Expressions in a Second Language


专著推荐 | 系统功能语言学与批评话语分析


专著推荐 | Introduction to Systemic Functional Linguistics(第二版)


专著推荐 |《语言教师专业技能与知识测评》


专著推荐 | Mixing Metaphor


专著推荐 | 外语教材研究国际著作(3卷本)


专著推荐 | 《2020年中国外语教材发展报告》


专著推荐 | 一对一语言教学中的学习策略


专著推荐 | 帮你掌握量表研究方法——测验等值、量表制订和联结的方法与实践


科研助力 | 有了Endnote还需要APA手册吗?


科研贴士 | 如何写好研究计划(Research Proposal)?


专著推荐 | Applying Systemic Functional Linguistics


专著推荐 | Learner Corpus Research


专著推荐 | 朱纯深. Fathoming Translation as Discursive Experience


专著推荐 | 吴朋《高校商务英语教师专业知识发展研究》(留言赠书)


专著推荐 | Corpus Approaches to the Language of Sports


专著推荐 | Collocations and Action Research


专著推荐 | 讲述他们的科研发表故事:新手到老手的国际发表研究


专著推荐 | 数字时代如何研究网络语用模因?(5卷本国际前沿著作)


专著推荐 | 语用学入门重要著作(9卷本)


译著推荐 | 为何麦家的《解密》英译本那么受欢迎?


专著推荐 | 《生态语言学:语言、生态与我们信奉和践行的故事》


专著推荐 | Humour Translation in the Age of Multimedia


专著推荐 | 《当代西方修辞学之管窥》(30周年纪念版)


专著推荐 | 人际语用学国际前沿著作(6卷本)


专著推荐 | 王克非 编:《双语语料库研制与应用新论》


专著推荐 | 身份研究与二语习得国际前沿(10卷本)


专著推荐 | 卢卫中:《认知修辞学:象似性的修辞性研究》


专著推荐 | Approaches to Internet Pragmatics: Theory and practice


专著推荐 | 谢朝群:网络交际中(不)礼貌与道德秩序研究


专著推荐 | Critical Perspectives on Global Englishes in Asia


专著推荐 | 研究方法:如何快速掌握社会网络分析?


专著推荐 | 《语料库多维度分析:方法与问题》


专著推荐 | 《认知语言学新动向:基于使用的词义和构式义研究》


专著推荐  | Bloomsbury认知文体学(3卷本)


专著推荐 | Bloomsbury2021年新书《系统功能语言学与翻译研究》


专著推荐 | Early Language Learning in School Contexts2021年新书


专著推荐  | Language Learning Environments:


专著推荐 | 王博、马园艺:Systemic Functional Translation Studies


专著推荐 | 医患争执话语研究:Argumentation between Doctors and Patients


专著推荐 | Jane Lockwood等《亚洲全球商务沟通话语研究》


译著推荐 | 汉学家Minford翻译的《鹿鼎记》到底怎么样?


专著推荐 | 最新国际英语学术写作教材:The Art and Architecture of Academic Writing


专著推荐 | Matthiessen系统功能语言学最新著作:Systemic Functional Linguistics


不当你的世界  只作你的肩膀

语言学通讯

关注您的语言学习、教学与科研

请留下你指尖的温度

让太阳拥抱你

这是一个有温度的公众号

球分享

球点赞

球在看


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存